

Layer Linter

[image: _images/layer-linter.svg][image: _images/layer_linter.svg]
 [https://pypi.python.org/pypi/layer_linter][image: Python versions]
 [http://pypi.python.org/pypi/layer-linter/][image: _images/layer_linter1.svg]
 [https://travis-ci.org/seddonym/layer_linter][image: _images/badge.svg]
 [https://codecov.io/gh/seddonym/layer_linter][image: Documentation Status]
 [https://layer-linter.readthedocs.io/en/latest/?badge=latest]Layer Linter has been deprecated in favour of Import Linter.

Import Linter [https://github.com/seddonym/import-linter] does everything Layer Linter does, but with more features and a slightly different API.
If you’re already using Layer Linter, migrating to Import Linter is simple: there is a guide here [https://layer-linter.readthedocs.io/en/latest/migrating-to-import-linter.html].

Outline

Layer Linter checks that your project follows a custom-defined layered architecture, based on
its internal dependencies (i.e. the imports between its modules).

	Free software: BSD license

	Documentation: https://layer-linter.readthedocs.io.

Overview

Layer Linter is a command line tool to check that you are following a self-imposed
architecture within your Python project. It does this by analysing the internal
imports between all the modules in your code base, and compares this
against a set of simple rules that you provide in a layers.yml file.

For example, you can use it to check that no modules inside myproject.foo
import from any modules inside myproject.bar, even indirectly.

This is particularly useful if you are working on a complex codebase within a team,
when you want to enforce a particular architectural style. In this case you can add
Layer Linter to your deployment pipeline, so that any code that does not follow
the architecture will fail tests.

Quick start

Install Layer Linter:

pip install layer-linter

Decide on the dependency flows you wish to check. In this example, we have
organised our project into three subpackages, myproject.high, myproject.medium
and myproject.low. These subpackages are known as layers. Note: layers must
have the same parent package (i.e. all be in the same directory). This parent is known as a container.

Create a layers.yml in the root of your project. For example:

My Layers Contract:
 containers:
 - myproject
 layers:
 - high
 - medium
 - low

(This contract tells Layer Linter that the order of the layers runs from low at the bottom
to high at the top. Layers higher up can import ones lower down, but not the other way around.)

Note that the container is an absolute name of a Python package, while the layers are relative to the container.

Now, from your project root, run:

layer-lint myproject

If your code violates the contract, you will see an error message something like this:

============
Layer Linter
============

Contracts

Analyzed 23 files, 44 dependencies.

My layer contract BROKEN

Contracts: 0 kept, 1 broken.

Broken contracts

My layer contract

1. myproject.low.x imports myproject.high.y:

 myproject.low.x <-
 myproject.utils <-
 myproject.high.y

For more details, see Usage [https://layer-linter.readthedocs.io/en/latest/usage.html].

Installation

Requirements

Layer Linter currently only supports Python 3.6 - 3.7.

Stable release

To install Layer Linter, run this command in your terminal:

$ pip install layer-linter

This is the preferred method to install Layer Linter, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Development version

The sources for Layer Linter can be downloaded from the Github repo [https://github.com/seddonym/layer_linter].

You can either clone the public repository:

$ git clone git://github.com/seddonym/layer_linter

Or download the tarball [https://github.com/seddonym/layer_linter/tarball/master]:

$ curl -OL https://github.com/seddonym/layer_linter/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Before use, you will probably want to read Core concepts.

Defining your contracts

Your layers contracts are defined in a YAML file named layers.yml. This
may exist anywhere, but a good place is in your project root.

The file contains one or more contracts, in the following format:

Contract name:
 containers:
 - mypackage.container
 ...
 layers:
 - layerone
 - layertwo
 ...
 whitelisted_paths:
 - mypackage.container.layertwo.module <- mypackage.container.layerone.module
 ...

	Contract name: A string to describe your contract.

	Containers: Absolute names of any Python package that contains the layers as
immediate children. One or more containers are allowed in this list.

	Layers: Names of the Python module relative to each container listed in
containers. Modules lower down the list must not import modules higher up.
(Remember, a Python module can either be a .py file or a directory with
an __init__.py file inside.)

	Whitelisted paths (optional): If you wish certain import paths not to
break in the contract, you can optionally whitelist them. The modules should be listed as
absolute names, with the importing module first, and the imported module second.

For some examples, see Core concepts.

Additional syntax

Optional layers

You may specify certain layers as optional, by enclosing the name in parentheses.

By default, Layer Linter will error if it cannot find the module for a particular layer.
Take the following contract:

My contract:
 containers:
 - mypackage.foo
 - mypackage.bar
 layers:
 - one
 - two

If the module mypackage.foo.two is missing, the contract will be broken. If you want
the contract to pass despite this, you can enclose the layer name in parentheses:

My contract:
 containers:
 - mypackage.foo
 - mypackage.bar
 layers:
 - one
 - (two)

Layer two is now optional, which means the contract will pass even though mypackage.bar.two
is missing.

Running the linter

Layer Linter provides a single command: layer-lint.

Running this will check that your project adheres to the contracts in your layers.yml.

	Positional arguments:

	package_name: The name of the top-level Python package to validate (required).

	Optional arguments:

	--config: The YAML file describing your layer contract(s). If not
supplied, Layer Linter will look for a file called layers.yml in the current directory.

	--quiet: Do not output anything if the contracts are all adhered to.

	--verbose (or -v): Output a more verbose report.

	--debug: Output debug messages when running the linter. No parameters required.

Default usage:;

layer-lint myproject

Using a different filename or location instead of layers.yml:

layer-lint myproject --config path/to/alternative.yml

Core concepts

The Dependency Graph

At the heart of Layer Linter is a graph of internal dependencies within
a Python code base. This is a graph in a mathematical sense [https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)]: a collection
of items with relationships between them. In this case, the items are
Python modules, and the relationships are imports between them.

For example, a project named pets with two modules, where pets.dogs imports pets.cats, would have a graph
like this:

[image: _images/simple-graph.png]
Note the direction of the arrow, which we’ll use throughout: the arrow points from the imported
module into the importing module.

If the project was larger, it would have a more complex graph:

[image: _images/complex-graph.png]
When you run Layer Linter, it statically analyses all of your
code to produce a graph like this. (Note: these are just visual representations of the underlying data structure;
Layer Linter has no visual output.)

Layers

Layers are a concept used in software architecture.
They describe an application organized into distinct sections, or layers.

In such an architecture, lower layers should be ignorant of higher ones. This means
that code in a higher layer can use utilities provided in a lower layer,
but not the other way around. In other words, there is a dependency flow from
low to high.

Layers in Python

In Python, you can think of a layer as a single .py file, or a package containing
multiple .py files. This layer is grouped with other layers, all sharing a common parent package:
in other words, a group of layers will all be in the same directory, at the same level.
Layer Linter calls this common parent a container.

Within a single group of layers, any file within a higher up layer may import from any file lower down,
but not the other way around - even indirectly.

[image: _images/layers.png]
The above example shows a single group consisting of three layers. Their container is the top level package, pets.
According to the constraints imposed by layers, pets.cats.purring may import pets.rabbits but not
pets.dogs.walkies. pets.dogs.walkies may import any other module, as it is in the highest layer.

(For further reading on Layers, see
the Wikipedia page on Multitier Architecture [https://en.wikipedia.org/wiki/Multitier_architecture]).

Contracts

Contracts are how you describe your architecture to Layer Linter. You write them in a layers.yml file. Each
Contract contains two lists, layers and containers.

	layers takes the form of an ordered list with the name of each layer module, relative to its parent package.
The order is from high level layer to low level layer.

	containers lists the parent modules of the layers, as absolute names that you could import, such as
mypackage.foo. If you have only one set of layers, there will be only one container: the top level package.
However, you could choose to have a repeating pattern of layers across multiple subpackages; in which case,
you would include each of those subpackages in the containers list.

You can have as many of these contracts as you like, and you give each one a name.

Example: single container contract

The three-layered structure described earlier can be described by the following contract. Note that the layers have
names relative to the single, containing package.

Three-tier contract:
 containers:
 - pets
 layers:
 - dogs
 - cats
 - rabbits

Example: multiple package contract

A more complex architecture might involve the same layers repeated across multiple containers, like this:

[image: _images/modular-layers.png]
In this case, rather than have three contracts, one for each container, you may list all the containers in a single
contract. The order of the containers is not important.

Modular contract:
 containers:
 - pets.dogs
 - pets.cats
 - pets.rabbits
 layers:
 - personality
 - traits
 - physical

Whitelisting paths

Sometimes, you may wish to tolerate certain dependencies that do not adhere to your contract.
To do this, include them as whitelisted paths in your contract.

Let’s say you have a project that has a utils module that introduces an illegal dependency between two
of your layers. The report might look something like this:

Broken contracts

My layer contract

1. pets.cats.whiskers imports pets.dogs.walkies:

 pets.cats.whiskers <-
 pets.utils <-
 pets.dogs.walkies

To suppress this error, you may add one component of the path to the contract like so:

Three-tier contract:
 containers:
 - pets
 layers:
 - dogs
 - cats
 - rabbits
 whitelisted_paths:
 - pets.cats.whiskers <- pets.utils

Running the linter again will show the contract passing.

There are a few use cases:

	Your project does not completely adhere to the contract, but you want to prevent it getting worse.
You can whitelist any known issues, and gradually fix them.

	You have an exceptional circumstance in your project that you are comfortable with,
and don’t wish to fix.

	You want to understand how many dependencies you would need to fix before a project
conforms to a particular architecture. Because Layer Linter only shows the most direct
dependency violation, whitelisting paths can reveal less direct ones.

Contributing

This package has now been superseded by Import Linter [https://github.com/seddonym/import-linter], so we are not considering new features here. If you
wish to contribute, please get involved with that package.

Credits

Development Lead

	David Seddon <david@seddonym.me>

Contributors

	Thiago Colares https://github.com/colares

	James Cooke https://github.com/jamescooke

	Simon Biggs https://github.com/SimonBiggs

Other credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

History

0.1.0 (2018-06-20)

	First release on PyPI.

0.2.0 (2018-06-23)

	Look for layers.yml in current working directory.

0.3.0 (2018-06-24)

	Renamed command to layer-lint.

	Changed order of layers in layers.yml to be listed high level to low level.

0.4.0 (2018-07-22)

	Made dependency analysis more efficient and robust.

	Improved report formatting.

	Removed illegal dependencies that were implied by other, more succinct illegal dependencies.

	Added --debug command line argument.

0.5.0 (2018-08-01)

	Added count of analysed files and dependencies to report.

	Fixed issues from running command in a different directory to the package.

	Increased speed of analysis.

	Changed --config_directory command line argument to --config-directory.

0.6.0 (2018-08-07)

	Added ability to whitelist paths.

0.6.1 (2018-08-07)

	Added current working directory to path.

0.6.2 (2018-08-17)

	Don’t analyse children of directories that aren’t Python packages.

	Prevented installing incompatible version of Pydeps (1.6).

0.7.0 (2018-09-04)

	Completed rewrite of static analysis used to build dependency graph.

	Added quiet and verbose reporting.

	Added type annotation and mypy.

	Built earlier versions of Python using pybackwards.

	Corrected docs to refer to layers.yml instead of layers.yaml.

0.7.1 (2018-09-04)

	Fixed packaging bug with 0.7.0.

0.7.2 (2018-09-05)

	Fixed bug with not checking all submodules of layer.

0.7.3 (2018-09-07)

	Dropped support for Python 3.4 and 3.5 and adjust packaging.

0.7.4 (2018-09-20)

	Tweaked command line error handling.

	Improved README and Core Concepts documentation.

0.8.0 (2018-09-29)

	Replace --config-directory parameter with --config parameter, which takes a file name instead.

0.9.0 (2018-10-13)

	Moved to beta version.

	Improved documentation.

	Better handling of invalid package names passed to command line.

0.10.0 (2018-10-14)

	Renamed ‘packages’ to ‘containers’ in contracts.

0.10.1 (2018-10-14)

	Improved handling of invalid containers.

0.10.2 (2018-10-17)

	Error if a layer is missing.

0.10.3 (2018-11-2)

	Fixed RST rendering on PyPI.

0.11.0 (2018-11-5)

	Support defining optional layers.

0.11.1 (2019-1-16)

	Updated dependencies, especially switching to a version of PyYAML to
address https://nvd.nist.gov/vuln/detail/CVE-2017-18342.

0.12.0 (2019-1-16)

	Fix parsing of relative imports within __init__.py files.

0.12.1 (2019-2-2)

	Add support for Click 7.x.

0.12.2 (2019-3-20)

	Fix bug with Windows file paths.

0.12.3 (2019-6-8)

	Deprecate Layer Linter in favour of Import Linter.

Migrating to Import Linter

If you would like to migrate from Layer Linter to Import Linter [https://github.com/seddonym/import-linter], you can easily migrate your setup.

Step One - Install

pip install import-linter

Step Two - Configure

Import Linter uses INI instead of YAML to define its contracts. Create an .importlinter file in the same directory
as your layers.yml. This is where your configuration will live.

Converting the format is simple.

Example layers.yml:

Contract one:
 containers:
 - mypackage
 layers:
 - api
 - utils

Contract two:
 # This is a comment.
 containers:
 - mypackage.foo
 - mypackage.bar
 - mypackage.baz
 layers:
 - top
 - middle
 - bottom
 whitelisted_paths:
 - mypackage.foo.bottom.alpha <- mypackage.foo.middle.beta

Equivalent .importlinter:

[importlinter]
root_package = mypackage

[importlinter:contract:1]
name = Contract one
type = layers
containers=
 mypackage
layers=
 api
 utils

[importlinter:contract:2]
This is a comment.
name = Contract two
type = layers
containers=
 mypackage.foo
 mypackage.bar
 mypackage.baz
layers=
 top
 middle
 bottom
ignore_imports=
 mypackage.foo.bottom.alpha -> mypackage.foo.middle.beta

Things to note:

	Import Linter requires the root package to be configured in the file, rather than passed to the command line.

	Each contract requires a type - this is because Import Linter supports other contract types.

	Each contract needs an arbitrary unique identifier in the INI section (in this case, 1 and 2).

	‘Whitelisted paths’ has have been renamed to ‘ignore imports’. The notation is similar except the arrow is reversed;
the importing package is still listed first, the imported package second.

Step Three - Run

To lint your package, run:

lint-imports

Or, if your configuration file is in a different directory:

lint-imports --config=path/to/.importlinter

Key differences between the packages

	You may notice slight differences in the imports Import Linter picks up on. The main example is that it does not
ignore modules in migrations subpackages, while Layer Linter does.

	Import Linter allows you to use other contract types and even define your own.

	Import Linter allows you to analyse imports of external packages too (though these don’t make sense in the context
of a layers contract).

Further reading can be found in the Import Linter documentation [https://import-linter.readthedocs.io].

Index

 _static/up-pressed.png

_static/up.png

_images/complex-graph.png
pets.cats

pets.cats.
whiskers

pets.cats.fur ”////'

pets.rabbits

pets.cats.

\

pets.dogs

\

pets.dogs.
walkies

_images/layers.png
pets.dogs

pets.dogs pets.dogs.walkies

]

pets.cats pets.cats.purring

pets.cats.whiskers pets.cats. fur

pets.rabbits

pets.rabbits

_images/modular-layers.png
pets.dogs. personality

1 pets. cats. personality]

N gy

pets.dogs. traits

1
1
———___fZZ”Z”C
1
1
1

e

[} pets.dogs . physical

]

bbbl abulbututn

| pets.cats. traits 1
[} I
I_____T_____I

i pets.cats.physical 1

pets.rabbits.personality

(DR, A

pets.rabbits.traits

pets.rabbits.physical

e ——————

=

=

_images/simple-graph.png
pets.cats

pets.dogs

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Layer Linter

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

